Special Lagrangian Cones

نویسنده

  • MARK HASKINS
چکیده

We study homogeneous special Lagrangian cones in C with isolated singularities. Our main result constructs an infinite family of special Lagrangian cones in C each of which has a toroidal link. We obtain a detailed geometric description of these tori. We prove a regularity result for special Lagrangian cones in C with a spherical link – any such cone must be a plane. We also construct a one-parameter family of asymptotically conical special Lagrangian submanifolds from any special Lagrangian cone.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Special Lagrangian cones in C³ and primitive harmonic maps

In this article I show that every special Lagrangian cone in C determines, and is determined by, a primitive harmonic surface in the 6symmetric space SU3/SO2. For cones over tori, this allows us to use the classification theory of harmonic tori to describe the construction of all the corresponding special Lagrangian cones. A parameter count is given for the space of these, and some of the examp...

متن کامل

Lagrangian Cones in C

In this article I show that every special Lagrangian cone in C 3 determines, and is determined by, a primitive harmonic surface in the 6-symmetric space SU3/SO2. For cones over tori, this allows us to use the classification theory of harmonic tori to describe the construction of all the corresponding special Lagrangian cones. A parameter count is given for the space of these, and some of the ex...

متن کامل

Special Lagrangian Cones with Higher Genus Links

For every odd natural number g = 2d+1 we prove the existence of a countably infinite family of special Lagrangian cones in C over a closed Riemann surface of genus g, using a geometric PDE gluing method.

متن کامل

Special Lagrangians and Lagrangian self-similar solutions in cones over toric Sasaki manifolds

We construct some examples of special Lagrangian submanifolds and Lagrangian self-similar solutions in almost Calabi–Yau cones over toric Sasaki manifolds. For example, for any integer g ≥ 1, we can construct a real 6-dimensional Calabi–Yau cone Mg and a 3-dimensional special Lagrangian submanifold F 1 g : L 1 g → Mg which is diffeomorphic to Σg ×R and a compact Lagrangian self-shrinker F 2 g :...

متن کامل

The Geometric Complexity of Special Lagrangian T 2-cones

We prove a number of results on the geometric complexity of special Lagrangian (SLG) T -cones in C. Every SLG T -cone has a fundamental integer invariant, its spectral curve genus. We prove that the spectral curve genus of an SLG T -cone gives a lower bound for its geometric complexity, i.e. the area, the stability index and the Legendrian index of any SLG T -cone are all bounded below by expli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008